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Abstract

Injectivity of ReLU neural networks plays an important role in gen-
erative models and compressed sensing. A natural question is when
randomly initialized neural networks are injective.

The recent work Puthawala et al. [2020] has investigated the phase
transition of injectivity probability of neural network layers with the
ReLU activation. The injectivity depends on the ratio m/n of the output
dimension m and the input dimension n.

We calculate an expected Euler characteristic surrogate for the injectivity
probability in terms of m and n, which undergoes a phase transition
when m/n ≈ 8.34. We conjecture that the phase transition for the
surrogate is the same as for the injectivity probability.

Moreover, we improve the current upper bound on the injectivity phase
transition ratio, and experimentally show the existing lower bounds are
not sharp. The new bounds are consistent with the Euler characteristic
phase transition matching the injectivity phase transition.

For deep networks, we give the first proof of injectivity of deep neural
networks of polynomially bounded width. We additionally connect
injectivity of deep networks to well-known contractive phenomena of
ReLU networks at initialization.
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Chapter 1

Introduction

Some basic properties of neural networks are yet to be fully understood. A
natural question we study in this thesis is: Given a “typical” neural network
which goes from Rn to Rm, is it injective?

It turns out this basic question is unsolved even for simple neural network
architectures. If we used linear models instead of neural networks, the
question would be trivial: an affine map from Rn is injective if and only if it
has rank n. But as soon as very simple nonlinearities come into play, we get
a hard problem with connections to various areas of mathematics.

The goals of this thesis are:

• to prove several new results about injectivity of ReLU neural networks,
both deep and shallow; and

• to highlight connections with well-established mathematical areas re-
lated to polyhedral geometry and concentration of measure.

We model a typical neural network as a random function determined by
independent Gaussian weights, which is how neural networks are often
initialized in theory and practice.

1.1 Why injectivity?

As discussed in Puthawala et al. [2020], injectivity of deep neural networks is
important in several applications. Invertibility properties of neural networks
have been studied in relation to compressed sensing [Bruna et al., 2013,
Bora et al., 2017] and generative modeling [Lei et al., 2019]. Normalizing
flows [Kobyzev et al., 2021] are widely used bijective neural network models,
and any hidden representation in the normalizing flow network must be an
injective map from Rn to Rm for some n ≤ m.
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1. Introduction

Local invertibility and injectivity are not equivalent. In applications it is
often enough that the Jacobian is of full rank everywhere, which means
the network is invertible around a point in the input space. Injectivity is a
stronger property and automatically implies local invertibility: we can think
of local invertibility as “injectivity in a small neighbourhood of a point”.

When learning neural representations of data from Rn in Rm for n ≤ m,
injectivity is equivalent to the representation not losing information from
the original data. Learned representations are well-known to be transferable
across very different learning problems [Yosinski et al., 2014], thus not losing
any information from the original data is an important theoretical property.

Finally, injectivity is a basic and interesting property of a function. Tools
required for mathematical understanding of injectivity of neural networks
could help prove general important properties of neural networks.

1.2 Why random networks?

Several phenomena relating to early training of neural networks are explained
well by the properties of neural networks at initialization. As initializing
with independent weights is standard, neural networks at initialization corre-
spond to our model of random networks in Section 2.2. Notable examples
include explanations to why batch normalization and residual connection
help early training [Labatie, 2019, Daneshmand et al., 2020], and vanishing
and exploding gradients [Hanin and Nica, 2018].

In addition, networks with randomized weights are actually an useful object
on their own: untrained neural networks contain “lottery ticket” subnet-
works which approximate arbitrary functions without training [Malach et al.,
2020, Ramanujan et al., 2020]. Randomly initialized networks have uses in
image denoising [Ulyanov et al., 2020] and compressed sensing [Heckel and
Soltanolkotabi, 2020].

Although networks that interpolate random data (as opposed to networks
with random parameters) have been the main random neural network object
to study for many years, there is a resurgent interest in randomly initialized
networks [Gallicchio and Scardapane, 2020, Schoenholz et al., 2017, Hanin
and Rolnick, 2018].

The recent literature on the Neural Tangent Kernel approximation [Jacot
et al., 2018] has given great incentive to study neural networks with random
weights. Many phenomena about neural networks can be understood in the
regime close to the initial random initialization.

Recent research has been concerned with training just the final layers of a
neural network. This is motivated by the fact that, in very wide networks
with a low-dimensional output, gradient descent often leaves the weights in
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1.3. Our results

all layers but the final one essentially fixed [Jacot et al., 2018, Chizat et al.,
2020]. Thus it makes sense to fix the randomly generated weights in the
expanding layers and optimize only the final layer. This is equivalent to a
random features model, which has known limitations [Yehudai and Shamir,
2020]. The injectivity questions in our paper are equivalent to asking when
the random features representation loses information, in terms of the number
of neurons in each layer.

1.3 Our results

1.3.1 Layerwise results

As Puthawala et al. [2020] have shown, the probability of injectivity of a
single neural network layer with n input and m output neurons undergoes
a “phase transition” depending on the ratio m/n. Thus it makes sense
to consider the “injectivity threshold” of the ratio m/n, under which the
injectivity probability goes to zero, and over which the injectivity probability
goes to 1. Our Theorem 3.12 improves upon their upper bound for the
injectivity threshold. In Section 3.3, we experimentally show that their lower
bound is far from sharp.

Calculating the injectivity probability in terms of n and m is not feasible
with current methods. We use tools inspired by stochastic polyhedral geom-
etry to approximate the injectivity probability with the expectation of the
Euler characteristic of the intersection of a particular random cone with the
sphere. In Section 4.1.1, we argue that the approximation may preserve the
phase transition. This “Euler characteristic heuristic” implies the injectivity
threshold for the ratio m/n could be around 8.34.

1.3.2 Multilayer results

In Chapter 5, we give the first proof that deep ReLU networks can be injective
at initialization without the hidden layer widths expanding exponentially. To
be precise, Theorem 5.1 implies a network with the first layer of width n and
the remaining L layers of width Cn is injective with high probability, when
C & L log L. An intermediate result which may be of independent interest
is Corollary 5.7, which gives a new characterization of injectivity in deep
random ReLU networks.

Moreover, we conjecture the optimal expansivity should not depend on the
depth at all. This is due to the known contractive properties of deep ReLU
networks at initialization, which we call angle convergence. In Proposition
5.14, we prove injectivity for “uniformly contractive” networks, in the sense
of deep preactivations of all possible inputs being contained in a small angle.
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1. Introduction

1.4 Related work

The most relevant prior work for the layerwise injectivity phase transition
is Puthawala et al. [2020], which gives various motivations for the precise
phrasing of the layerwise injectivity question. In particular, their Lemma
1 implies the injectivity of a layer with a bias term is not fundamentally a
different problem than the injectivity of biasless layers we consider in this
work. Moreover, they show that batch, weight and spectral normalizations
do not influence injectivity.

The Euler characteristic surrogate for the injectivity probability in Chapter 4 is
motivated by several works on intrinsic volumes and the statistical dimension
[Schneider and Weil, 2008, Amelunxen et al., 2013, Amelunxen and Lotz,
2017]. In Proposition 4.14, we give an explicit formula for the intrinsic
volumes of the nonconvex union of orthants in Rm with at most n positive
coordinates, which may be of independent interest for stochastic geometry
research.

Regarding deep networks, Puthawala et al. [2020] uses Whitney’s embedding
theorem and random projections to prove there exist randomly-initialized
injective deep ReLU networks with end-to-end expansivity 2. However,
the given initialization is nonstandard; in particular, the weight matrices
are random matrices of low rank, and therefore do not correspond to the
theoretical model of random neural networks usually studied in the literature.
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Chapter 2

Notation and background

2.1 ReLU neural networks

Let n and m be positive integers. In the machine learning literature, the
simplest example of a neural network from Rn to R is of the form

x 7→
m

∑
i=1

ai σ(wT
i x), (2.1)

where σ : R → R is an activation function, and (wi)1≤i≤m ∈ Rn and a =
(ai)1≤i≤m ∈ R are weights. The weights wi are stacked in a weight matrix
W ∈ Rm×n.

In this work, the only activation we consider is the piecewise linear σ = ReLU,
the rectified linear unit:

ReLU(x) = max{x, 0} for all x ∈ R. (2.2)

It is by far the most widely used activation in both theory and practice, owing
to its simple mathematical form, 1-Lipschitzness, and very fast evaluation
on standard computer architectures. We use the same notation to denote the
pointwise application ReLU : Rm → Rm:

ReLU(x)i = max{xi, 0} for all x ∈ Rm and 1 ≤ i ≤ m. (2.3)

We can draw Equation (2.1) as a composite mapping:

Rm RmRn W−−−−→ ReLU−−−−→ Ra−−−→

7



2. Notation and background

The vectors of dimension m in the above figure are usually called hidden
preactivations and hidden activations. The sets of arrows corresponding to W
and a are called affine layers, and similarly the pointwise activation arrows
are called the ReLU layer. The mapping x 7→ ReLU(Wx) given by the first
two arrows in the above diagram is called a (hidden) representation.

Deep neural networks have multiple iterations of the affine and ReLU layers,
with varying dimensions of layers. Conceptually, only the output of the final
ReLU layer is considered a representation. This is because the last affine layer
(going to R) can be considered as a linear classifier on a complicated feature
embedding of the input. The composition of all layers but the final affine
layer “represents” the input in the feature space Rm, and the final layer gives
a score based on a simple linear combination of the representation neurons.

The network in Equation (2.1) is homogeneous in x, thus it cannot approxi-
mate general functions when varying W and a. This issue is often alleviated
by adding biases b ∈ Rm:

x 7→
m

∑
i=1

ai σ(wT
i x + bi). (2.4)

The network in Equation (2.4) is obviously not injective, because the input
dimension is higher than the output dimension. When discussing injectivity
of neural networks, we only care about networks that expand the dimension
of the input. Henceforth, when we talk about injectivity of neural networks,
we actually want injective representations. As discussed in Section 1.1,
injective representations are important because they do not lose information
from the input space.

2.2 Deep random neural networks

Let L ≥ 1 be the number of layers, or depth of the network. Let d0, . . . , dL
be positive integers denoting the layer widths. For all 1 ≤ ` ≤ L define the
affine layers B(`)(x) = W(`)x + b(`) as affine maps from Rd`−1 to Rd` . Then a
neural network f : Rd0 → RdL is given by

f = ReLU ◦B(L) ◦ . . . ◦ ReLU ◦B(1). (2.5)

If L = 1 and b(1) = 0, then f takes the simple form x 7→ ReLU(Wx).

We assume that the entries of the matrices W(`) are independent Gaussians
with mean 0 and variance 1. This is an often-used assumption in the literature,
and is standard in injectivity-related work [Puthawala et al., 2020, Bruna
et al., 2013]. A different often-used approach is to initialize weights with
variance depending on the layer width [He et al., 2015]. In the case of biasless
networks with b(`) = 0, this has no impact on injectivity.
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2.3. Orthants

As discussed above, we omit the conventional last affine map in the definition
of a neural network. This omission does not matter as long as we are inter-
ested in high-dimensional representations, because injectivity is unaffected
by a random affine embedding. All networks we consider in this work end
with a ReLU layer.

2.3 Orthants

An orthant in Rd is a generalization of the concept of a quadrant in R2, or
a ray from the origin in R. In our proofs, we will use two subtly different
concepts of an orthant.

Definition 2.1 Given a set S ⊆ {1, 2, . . . , d}, a half-open orthant Od
S is the set

Od
S

def
= {(x1, x2, . . . , xd) ∈ Rd : xi > 0 for all i ∈ S; xi ≤ 0 for all i /∈ S}.

(2.6)

The half-open orthants in R are the intervals 〈−∞, 0] and 〈0, ∞〉. The full
space Rd is the disjoint union of 2d half-open orthants, indexed by all 2d

subsets of {1, 2, . . . , d}.
We define half-open orthants this way because of the following property:

Proposition 2.2 For a half-open orthant Om
S , if x ∈ Om

S , then ReLU(x) ∈ Om
S .

A closed orthant is the topological closure of a half-open orthant:

Definition 2.3 Given a set S ⊆ {1, 2, . . . , d}, a closed orthant Od
S is the set

Od
S

def
= {(x1, x2, . . . , xd) ∈ Rd : xi ≥ 0 for all i ∈ S; xi ≤ 0 for all i /∈ S}.

(2.7)

We will use the word “orthant” for both concepts interchangeably if it is clear
from the context. The notations O and O are always used for half-open and
closed orthants, respectively.

Definition 2.4 Given an orthant Om
S or Om

S , we say it has k pluses if |S| = k.

2.4 Miscellaneous notation

For a vector z ∈ Rd, we define zpos = ReLU(z) and zneg = z − zpos, the
positive and negative parts of z.

For nonnegative integers a and b, we use the notation T(a, b) for the prefix
sum of binomial coefficients:

T(a, b) =
b

∑
i=0

(
a
i

)
. (2.8)
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2. Notation and background

Our convention is that (a
b) = 0 whenever b /∈ {0, 1, . . . , a}.

The binary entropy function H : [0, 1]→ R is defined as

H(p) = −p log2(p)− (1− p) log2(1− p). (2.9)

In combinatorial calculations in Section 4.3, we use the machinery of generat-
ing functions, which are formal power series in a single variable. We never
evaluate any generating function at a point, so all generating functions are
just sequences of their coefficients.

For a generating function

A(x) =
∞

∑
k=−∞

akxk, (2.10)

we denote “taking its k-th coefficient” by
[
xk] A(x) def

= ak. All standard arith-
metic operations on rational functions translate analogously to the algebra
of formal power series. We interpret the derivative of a power series in the
formal sense:

A′(x) =
∞

∑
k=−∞

kakxk−1. (2.11)

10



Chapter 3

The layerwise injectivity threshold

3.1 Characterizing injectivity

Puthawala et al. [2020] introduce the notion of a directed spanning set of a
m× n matrix with respect to a vector x ∈ Rn. 1

Definition 3.1 For m ≥ n, let W ∈ Rm×n. We say that W has a directed
spanning set with respect to x ∈ Rn if W has n linearly independent rows
having nonnegative inner product with x.

Using directed spanning sets, they characterize injectivity of fully connected
layers with arbitrary weights:

Theorem 3.2 (Puthawala et al. [2020]) For m ≥ n, let W ∈ Rm×n be a matrix.
The function x 7→ ReLU(Wx) is injective if and only if W has a directed
spanning set with respect to all x ∈ Rn.

As all matrices we consider in this work have independent Gaussian entries,
we may simplify Theorem 3.2. We first note that the image of such a matrix
is a random subspace.

Proposition 3.3 Let m ≥ n. If the rows of W ∈ Rm×n are independent
standard normal vectors, then the subspace WRn ⊆ Rm is a uniformly
random n-dimensional subspace 2 of Rm.

Proof The n basis vectors (ei)1≤i≤n in Rn are mapped to n independent
standard normal vectors in Rm. Those are linearly independent almost surely,
and rotationally invariant, hence they form a basis of a uniformly random
subspace. �

1Their Definition 1 has a typo: n×m should be m× n.
2Formally, it follows the uniform Haar measure on the Grassmanian Grn,m. This produces

the same distribution as as any intuitive way to randomly sample a subspace.
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3. The layerwise injectivity threshold

Then Theorem 3.2 reduces to the following statement, which connects random
polyhedral geometry with injectivity.

Theorem 3.4 For m ≥ n, let W ∈ Rm×n be a matrix with independent N(0, 1)
entries. The function x 7→ ReLU(Wx) is injective if and only if the subspace
WRn does not contain a vector with less than n nonnegative coordinates.

We are interested in the probability that the function x 7→ ReLU(Wx) is injec-
tive. As the distribution over subspaces is atomless, we can use “nonnegative
coordinates” and “positive coordinates” interchangeably, almost surely.

Definition 3.5 Let Cm,n be the set of vectors in Rm with strictly less than n
positive coordinates. Thus, Cm,n is the union of T(m, n− 1) = (m

0 ) + (m
1 ) +

. . . + ( m
n−1) orthants in Rm.

Theorem 3.6 Let V be a random n-dimensional subspace of Rm. The proba-
bility of x 7→ ReLU(Wx) being injective is equal to

pm,n
def
= P [V ∩ Cm,n = {0}] . (3.1)

Proof Note that the event “the subspace V has some coordinate constantly
zero” is an event of measure zero. Then the statement follows directly from
Theorem 3.4 and Proposition 3.3. �

Remark 3.7 The probability pm,n is equal to I(m, n) from Puthawala et al.
[2020]. We use a different notation because we focus on the random polyhe-
dral geometry characterization of this probability.

As proved in Puthawala et al. [2020], the probability of injectivity when
n and m go to infinity is governed by the ratio m/n. In fact, there is a
phase transition happening: as we increase the ratio m/n, the random neural
network layer goes from w.h.p. not injective to w.h.p. injective.

There is a trivial lower bound on m/n in order for the map x 7→ ReLU(Wx)
to be injective:

Proposition 3.8 When m < 2n, pm,n = 0.

Proof For any x ∈ Rn, the negative coordinates of x are positive coordinates
of −x. Hence when m < 2n, at least one of x and −x is in the set Cm,n. �

Remark 3.9 Some machine learning intuition: if m < 2n, taking a random
input and weights, the number of “alive” ReLU activations will be less than
n on average. This means that there is a large chance of the Jacobian being of
rank less than n on a random input, hence the layer is not locally invertible.

The interesting regime is when m = Θ(n), and there are explicit bounds on
the ratio m/n with regards to injectivity:
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3.2. Upper bound on the injectivity threshold

Theorem 3.10 [Puthawala et al. [2020]] If m ≥ 10.5n, then pm,n → 1 as n
goes to ∞.

Theorem 3.11 [Puthawala et al. [2020]] If m ≤ 3.4n, then pm,n → 0 as n
goes to ∞. In fact, with high probability there is an explicit “noninjectivity
certificate”: x 7→ ReLU(Wx) doesn’t have full rank at x = −∑m

i=1 wj, where
(wj)1≤j≤m are the rows of the matrix W.

We may think of an “injectivity threshold” for m/n, under which pm,n goes
to zero, and over which pm,n goes to 1. In Chapter 4, we will use advanced
random polyhedral geometry tools in a heuristic derivation of what the
injectivity threshold should be, via the characterization in Theorem 3.4. The
conjectured threshold is close to m = 8.34n.

We do not make any formal claims about the sharpness of the phase transition.
Although it would be unusual if there was a constant-sized region of the
ratio m/n where pm,n was neither very large nor very small, we do not yet
have the tools to prove this rigorously.

3.2 Upper bound on the injectivity threshold

In this section, we improve the bound in Theorem 3.10 via a new proof, using
the characterization from Theorem 3.4.

Theorem 3.12 If m ≥ 9.09n, then pm,n → 1 as n goes to ∞.

Proof For a fixed orthant O ⊆ Rm, the probability of a random subspace of
dimension n intersecting O nontrivially is exactly

ξ(m, n) def
=

1
2m−1

n−1

∑
i=0

(
m− 1

i

)
=

1
2m−1 T(m− 1, n− 1); (3.2)

see Lemma 6.6.

We union bound over all orthants that Cm,n is made of:

P [V ∩ Cm,n 6= {0}] ≤
n−1

∑
k=0

(
m
k

)
ξ(m, n) (3.3)

=
1

2m−1 T(m− 1, n− 1)T(m, n− 1) (3.4)

<
1

2m T(m, n)2 (3.5)

≤ 1
2m 22mH(n/m) = 2−n(c−2cH(1/c)), (3.6)

where we used the well-known bounds on T(a, b) via the binary entropy
function H; see Appendix A.1 for the details. For c ≥ 9.09, the probability of
noninjectivity decays exponentially in n. �
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3. The layerwise injectivity threshold

3.3 Lower bound on the injectivity threshold

Puthawala et al. [2020] prove a lower bound on the injectivity threshold by
exhibiting an explicit x ∈ Rn where the network is not locally injective with
high probability.

Theorem 3.11 [Puthawala et al. [2020]] If m ≤ 3.4n, then pm,n → 0 as n
goes to ∞. In fact, with high probability there is an explicit “noninjectivity
certificate”: x 7→ ReLU(Wx) doesn’t have full rank at x = −∑m

i=1 wj, where
(wj)1≤j≤m are the rows of the matrix W.

We present the basic idea behind the proof.

Proof (Outline) Consider a single dot product wT
i (−x) for 1 ≤ i ≤ m. It is

distributed as

−wT
i x = ‖wi‖2

2 + wT
i ∑

j 6=i
wj = ‖wi‖2

2 + ‖wi‖2Y, (3.7)

where Y ∼ N(0, m− 1), because the sum ∑j 6=i wj is a sum of m− 1 Gaussian
vectors independent of wi.

It is standard to prove ‖wi‖2 concentrates well around
√

n, hence the above
expression is positive approximately whenever some N(0, m) variable is
smaller than −

√
n.

On average, we thus expect around Φ(−
√

n/m) fraction of rows to have a
positive dot product with x, where Φ is the cumulative distribution function
of a N(0, 1) variable. We have noninjectivity whenever this fraction is smaller
than n/m, and the solution for 1/c = Φ(−

√
1/c) is around c = 3.4.

After filling in some technical details 3 and standard computations, for
m ≤ 3.4n we get pm,n → 0 as n goes to ∞. �

The intuition behind their noninjectivity certificate is the following: we expect
x = −∑m

i=1 wi to correlate negatively with more than half of the rows wi,
given that they are independent standard normal vectors. It turns out that
for m ≤ 3.4n, we hit less than n positive inner products.

The proof of Theorem 3.11 has a simple main idea: construct x such that the
dot products wT

i x provably have negative mean, and then use concentration
inequalities. One may think of a better expression for the noninjectivity certifi-
cate. For example, we can try x = −∑i

wi
‖wi‖ , which has similar concentration

properties, and produces certificates up to m = 3.5n for n ≤ 100.

3One needs careful tail bounds because we want noninjectivity with high probability, and
the dot products above are not independent. The main ingredients are concentration of the
dot product of two independent standard normal vectors, and the union bound.
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3.3. Lower bound on the injectivity threshold

We give experimental evidence that this is not the right approach. More
precisely, we solve a mixed-integer linear program for the optimal x, using
the Python API of the state-of-the art solver Gurobi [Gurobi Optimization,
2021]. Here, the optimal x is a vector which has positive inner product with
most rows of the matrix W.

Consider the following problem:

max
x∈Rn,a∈Rm

m

∑
i=1

ai (3.8a)

subject to ‖x‖1 = n (3.8b)

−U(1− ai) ≤ wT
i x ≤ Uai for 1 ≤ i ≤ m (3.8c)

ai ∈ {0, 1} (3.8d)

for some large U > 0. It is easy to see the solution x to the above program
maximizes the number of positive inner products with the rows of W. If
the objective is at least m − n + 1, the function x 7→ ReLU(Wx) is locally
noninjective at −x.

As mixed-integer programs cannot generally be solved in polynomial time,
finding the optimal x for n ≥ 20 is too slow. But, as Gurobi returns incumbent
solutions as it finds them in the branch-and-bound algorithm, we can still
produce noninjectivity certificates. We empirically find that one-layer random
networks Rn → Rm with n = 100 and m = 500 are not injective. Gurobi finds
noninjectivity certificates in under a minute on an Intel Core i7 processor.
This strongly suggests the injectivity threshold is greater than 5.

Moreover, the near-optimal x are very different than the sum-of-rows certifi-
cate: see Figure 3.1. With the sum-of-rows certificate, the dot products follow
a unimodal distribution with nice tails. With the near-optimal certificate, the
inner product distribution is bimodal, with a discontinuity below zero.

It is easy to see finding the optimal injectivity certificate x for a fixed matrix
W is equivalent to the following problem: Given m points on Sn−1, find the half-
sphere with the least number of points. The question of the injectivity threshold
is then equivalent to:

Problem 3.13 Sample m = cn points independently from the uniform mea-
sure on Sn−1. What is the threshold for c such that there is a halfsphere with
less than n points with high probability?

In this formulation, it is easier to believe Figure 3.1. Indeed, we are in a
high-dimensional optimization regime, and random things do not behave as
in the low-dimensional regime [Wainwright, 2019]. The number of points
is linear in the dimension, thus concentration of measure is likely not an
important factor in the optimal solution.
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3. The layerwise injectivity threshold

a) The sum-of-rows certificate.
b) The certificate from the mixed-integer program.

Figure 3.1: Comparing different certificates via the distribution of inner products with the row
vectors. Here n = 100 and m = 500.

16



Chapter 4

The Euler characteristic heuristic for
the injectivity threshold

Parts of this chapter are joint work with Charles Clum. The unpublished
notes [Clum, 2021a] serve as the basis for Section 4.2.

Parts of this chapter will feature in the PhD thesis [Clum, 2021b].

4.1 Intrinsic volumes and the Crofton formula

Recall a definition and a theorem from Chapter 3:

Definition 3.5 Let Cm,n be the set of vectors in Rm with strictly less than n
positive coordinates. Thus, Cm,n is the union of T(m, n− 1) = (m

0 ) + (m
1 ) +

. . . + ( m
n−1) orthants in Rm.

Theorem 3.6 Let V be a random n-dimensional subspace of Rm. The proba-
bility of x 7→ ReLU(Wx) being injective is equal to

pm,n
def
= P [V ∩ Cm,n = {0}] . (3.1)

To calculate the probability in Equation (3.1), we will need tools applicable to
intersections of subspaces and general cones.

Definition 4.1 A (closed) cone C ⊂ Rd is a nonempty (closed) set with the
following property: if x ∈ C, then λx ∈ C for all λ ≥ 0.

For example, a quadrant in R2 is a cone; same with orthants in Rd. Any
subspace of Rd is a cone. Cones need not be convex; the union of the
coordinate axes in R2 is a nonconvex cone. Cones need not “go to infinity”;
the only counterexample is the cone {0}.

In our work, we consider only polyhedral cones, which are cones that are
unions of polyhedra. Polyhedral cones are closed by definition.

17



4. The Euler characteristic heuristic for the injectivity threshold

Definition 4.2 A convex polyhedral cone is a cone that can be written as the
intersection of a finite number of halfspaces. A polyhedral cone is a finite union
of convex polyhedral cones.

The injectivity threshold of x 7→ ReLU(Wx) is connected with random
polyhedral geometry through Theorem 3.6. The seminal paper Amelunxen
et al. [2013] focuses on a very similar question:

Problem 4.3 Let C and K be convex polyhedral cones in Rd. Draw a random
orthogonal basis Q ∈ Rd×d. What is the probability

P [C ∩QK] (4.1)

in terms of the cones C and K?

Note that if we let K to be a subspace, we recover almost the same problem
as in Theorem 3.6, except the cone there is not convex. The motivation of
Amelunxen et al. [2013] does not have anything to do with injectivity; they
investigate phase transitions of random convex optimization problems.

In this work, we need the notion of the intrinsic volumes of a cone. The
standard reference for this is Chapter 6 of Schneider and Weil [2008]. We will
also make use of the exposition in Amelunxen and Lotz [2017].

Definition 4.4 For a convex polyhedral cone C ⊂ Rd, define span(C) to be
the smallest subspace of Rd containing C. The faces of C are the intersections
of C with supporting hyperplanes, and C itself. For example, a quadrant in
R2 has one face of dimension 0, two faces of dimension 1, and one face of
dimension 2.

The relative interior of a face F is the (topological) interior of F in span(C).

The projection of any point x to any convex closed C ⊂ Rd is well-defined as
the unique point y ∈ C for which ‖x− y‖2 is minimal.

Definition 4.5 Let 0 ≤ k ≤ d. Let g ∼ N(0, Id) be a standard normal vector
in Rd. The intrinsic volume of dimension k of a convex polyhedral cone C ⊂ Rd,
denoted vk(C), is the probability that the projection of g to C lands in the
relative interior of a face of dimension k.

Due to the scaling property of cones in Definition 4.1, sampling g from the
sphere Sd−1 results in the same probability as when g is a Gaussian vector.
In general, we can use any rotationally invariant measure on Rd.

Example 4.6 Let us calculate the intrinsic volumes of a quadrant Q in Rd.
See Figure 4.1 for an illustration.

The points with both coordinates positive are projected to themselves, and
this is the only way a point lands in a face of dimension 2, thus v2(Q) = 1

4 .

18



4.1. Intrinsic volumes and the Crofton formula

A

B

C

Figure 4.1: The point A is projected to the unique face of dimension 0, which is the origin. The
point B is projected to the x-axis, and the point C is projected to the unique face of dimension 2,
the cone itself.

The points with exactly one positive coordinate are projected to the relative
interiors of the corresponding axes, which are faces of dimension 1. Hence,
v1(Q) = 1

2 . Finally, the points with negative coordinates are projected to the
origin, which makes v0(Q) = 1

4 .

Remark 4.7 Note that the probabilities v0(C), v1(C), . . . , vd(C) form a proba-
bility distribution on {0, 1, . . . , d}. The statistical dimension of Amelunxen et al.
[2013] is defined as the mean of this distribution. It has some very useful
properties, which are outside the scope of this work. We just note that the
statistical dimension appears in answers to questions similar to Problem 4.3,
and that it is the correct way to generalize the notion of dimension of a
subspace to arbitrary convex cones.

For general polyhedral cones as in Definition 4.2, the intrinsic volumes are
not defined via the projection probability as in Definition 4.5. The correct
generalization is the following:

Definition 4.8 For k ≥ 1, the intrinsic volumes of a polyhedral cone C =⋃
i∈I CI , where (Ci)i∈I are convex polyhedral cones, are defined by inclusion-

exclusion:

vk(C) = ∑
∅ 6=J⊆I

(−1)|J|+1 vk

(⋂
i∈J

Ci

)
. (4.2)

The inclusion-exclusion comes from the valuation properties of vk and the
uniqueness of the extension of any valuation on convex sets to the convex
ring. Note that this definition does not correspond to the probability of a
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4. The Euler characteristic heuristic for the injectivity threshold

projection of a Gaussian vector landing in a face of dimension k of a general
nonconvex cone. We discuss this further in Appendix B.2.

The tool used in Amelunxen et al. [2013] and Amelunxen and Lotz [2017] to
solve problems such as Problem 4.3 is the following formula:

Theorem 4.9 [Kinematic Crofton formula] Let C ⊂ Rm be a convex cone.
Let V be a random n-dimensional subspace of Rm. Then

P [V ∩ C 6= {0}] = 2
b n−1

2 c

∑
i=0

vm−n+2i+1(C). (4.3)

This is not yet useful in the context of injectivity, as Theorem 4.9 cannot be
applied to the probability in Theorem 3.6 because the cone Cm,n is non-convex.

Proposition 4.10 Let C ⊂ Rm be a cone. Let V be a random n-dimensional
subspace of Rm. The probability pm,n from Equation (3.1) is equal to

pm,n = 1−P
[
V ∩ (C ∩ Sm−1) 6= ∅

]
= 1−E [1s(V ∩ C)] , (4.4)

where 1s is the spherical indicator function, defined as

1
s(A) =

{
1 if A ∩ Sm−1 6= ∅;
0 otherwise.

(4.5)

Proof Any intersection of cones is a cone, thus V ∩ C is always a cone. It
intersects the sphere if and only if it is not equal to the trivial cone {0}. The
probability of an event is equal to the expectation of its indicator function.�

The spherical cinematic formulas from Schneider and Weil [2008], allow us to
compute expectations of the form E [F(V ∩ C)], when:

• C is a finite union of convex cones, and

• F is additive, which means it satisfies the functional equation

F(A ∩ B) + F(A ∪ B) = F(A) + F(B) (4.6)

for all A, B ⊂ Rm.

The cone Cm,n is a finite union of orthants in Rm, however 1s does not satisfy
the additivity Equation (4.6). The unique additive function which agrees
with 1

s on convex cones is defined through the Euler characteristic of subsets
of the sphere Sm−1.
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4.1. Intrinsic volumes and the Crofton formula

Definition 4.11 Let χ be the Euler characteristic function on Rm. Define

χs(A) = χ(A ∩ Sm−1) (4.7)

to be the spherical Euler characteristic of a set A ∈ Rm.

Equations 6.62 and 6.63 in Schneider and Weil [2008] then give us the follow-
ing theorem:

Theorem 4.12 [Spherical Crofton formula] Let C ⊂ Rm be a (possibly non-
convex) cone. Let V be a random n-dimensional subspace of Rm. Then

E [ χs(V ∩ C) ] = 2
b n−1

2 c

∑
i=0

vm−n+2i+1(C). (4.8)

Motivated by Theorem 4.12, let us define

qm,n = E [ χs(V ∩ Cm,n) ]
?≈ E [ 1s(V ∩ Cm,n) ] = 1− pm,n (4.9)

In the rest of this chapter, we estimate the order of qm,n explicitly. Our goal
is to show that the phase transition from |qm,n| → ∞ to qm,n → 0 happens
when m/n = cEuler ≈ 8.34.

4.1.1 Using χ as a surrogate for 1

The phase transition threshold for qm,n can be thought of as the “Euler
characteristic threshold”, in analogy with the injectivity threshold from
Chapter 3. We conjecture that the Euler characteristic threshold might be a
good candidate for the injectivity threshold. In particular, we have very good
reasons to think pm,n → 1 implies qm,n → 0, and some vague intuition for the
reverse implication.

In the theory of Gaussian random fields [Adler and Taylor, 2007], the Euler
characteristic is used as an approximation to the indicator function of so-
called excursion sets. If f is sampled from a Gaussian process, an excursion
set Au( f ) is the preimage of an interval of the form 〈u,+∞〉.

We paraphrase how Adler et al. [2015] justify the Euler characteristic heuristic:

Suppose that u is large, so that the probability of Au( f ) being nonempty is
small. Then the excursion set Au( f ) is most likely to be made up of a few
isolated small regions, with neither holes, handles nor hollows. In fact, if u is
large, it is likely that there would be at most one component to this set. Then
the Euler characteristic, which is equal to 1 on simply connected nonempty
sets, approximates the indicator function of Au( f ) well.
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4. The Euler characteristic heuristic for the injectivity threshold

Thus, the approximation in Equation (4.9) is likely to be correct when pm,n is
large, which would imply that the injectivity threshold is a lower bound to
the Euler characteristic threshold.

We could also assume that there is no extreme cancellation in the expectation
of the Euler characteristic when pm,n is small. If this assumption could be
made rigorous, pm,n → 0 would imply qm,n 6= 0, and the thresholds would be
equal.

4.2 Calculating qm,n

For clarity, we give an explicit formula for for qm,n+1 instead of qm,n. The
difference does not matter, since we are interested in the behaviour of qm,n in
terms of the ratio m/n.

Theorem 4.13

qm,n+1 =
(−1)n

2m−n−1

b n
2 c

∑
i=0

U(m, n, 2i) (4.10)

where

U(m, n, 2i) =
(

m
n− 2i

) n

∑
`=0

(
−1

2

)` (n− 2i
`− 2i

) `

∑
j=0

(
m− n + `

j

)
. (4.11)

In particular, the first term equals

U(m, n, 0) =
(

m
n

) n

∑
`=0

(
−1

2

)` (n
`

) `

∑
j=0

(
m− n + `

j

)
. (4.12)

Due to Theorem 4.12, the expectation of the Euler characteristic is determined
by the intrinsic volumes vk(Cm,n+1) for k ≥ m− n. The main step in the proof
is the following formula for vk:

Proposition 4.14 For k ≥ m− n,

vk(Cm,n+1) = (−1)m
m

∑
a=k

(
−1

2

)a (a
k

)(
m
a

) n−m+a

∑
j=0

(
a
j

)
. (4.13)

Proof (of Proposition 4.14) For a subset of coordinates S ⊆ {1, 2, . . . , m}, let
Om

S be the orthant with exactly the coordinates in S positive. Let Fm,n be
the the family of subsets of {1, 2, . . . , m} with at most n elements. The cone
Cm,n+1 is the union of orthants indexed by elements of Fm,n:

Cm,n+1 =
⋃

S⊂m
|S|≤n

Om
S =

⋃
S∈Fm,n

Om
S (4.14)
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4.2. Calculating qm,n

By Definition 4.8, the intrinsic volume of an union of orthants is

vk(Cm,n+1) = ∑
∅ 6=J⊆Fm,n

(−1)|J |+1 vk

( ⋂
S∈J
Om

S

)
. (4.15)

For any subset J ⊆ Fm,n, the intersection
⋂

S∈J Om
S is an inclusion of an

orthant in Rm; that is, a possibly lower-dimensional orthant. The dimension
of
⋂

S∈J Om
S is equal to the number of coordinates where all the orthants

(Cs)S∈J agree. It is useful to formalize this notion:

Definition 4.15 Let J be a subfamily of subsets of {1, 2, . . . , m}. The agree-
ment set of J is equal to the following set:

A(J ) =

( ⋃
S∈J

S

)c ⊔( ⋂
S∈J

S

)
(4.16)

The above notation allows us to phrase the dimensions of the intersection
cones in the summation in Equation (4.15) succinctly. For any J ⊆ Fm,n,

dim span
⋂

S∈J
Om

S = |A(J )|. (4.17)

If A(J ) = ∅, the intersection of the orthants corresponding to sets in J is
a single point {0}. Else, the intersection is an orthant of dimension |A(J )|,
embedded in Rm.

The intrinsic volumes vk of an embedded orthant in Rm depend only on its
actual dimension. The following two lemmas, proved in Appendix B.1, give
us explicit formulas for the intrinsic volumes of embedded orthants:

Lemma 4.16 For 0 ≤ k ≤ d, the intrinsic volume vk of the nonnegative
orthant Od

{1,2,...,d} = Rd
≥0 ⊆ Rd is

vk(R
d
≥0) =

1
2d

(
d
k

)
. (4.18)

Lemma 4.17 For 0 ≤ d ≤ m, let F : Rd → Rm be an isometric linear embed-
ding. Then, for 0 ≤ k ≤ d,

vk(FRd
≥0) =

1
2d

(
d
k

)
, (4.19)

and vk(FRd
≥0) = 0 for k > d.
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4. The Euler characteristic heuristic for the injectivity threshold

The above two lemmas immediately imply that for all J ⊆ Fm,n,

vk

( ⋂
S∈J
Om

S

)
=

1
2|A(J )|

(
|A(J )|

k

)
. (4.20)

For 0 ≤ a ≤ m and 1 ≤ p ≤ ∑n
i=0 (

m
i ), define Nm,n(p, a) to be the number of

subfamilies J ⊆ Fm,n with |J | = p and |A(J )| = a. Then Equation (4.15)
can be written as

vk(Cm,n+1) = ∑
p≥1

m

∑
a=k

Nm,n(p, a)(−1)p+1 1
2a

(
a
k

)
(4.21a)

=
m

∑
a=k

1
2a

(
a
k

)
∑
p≥1

(−1)p+1Nm,n(p, a) (4.21b)

The plan now is to get a non-closed formula for Nm,n(p, a), and then calculate
∑p≥1(−1)p+1Nm,n(p, a) directly. We can describe Nm,n(p, a) as follows:

• There are (m
a ) ways to choose the set A def

= A(J ).

• If |A| = a, the cardinality of R def
=
⋂

S∈J S can be any 0 ≤ r ≤ a.
If we fix r, there are (a

r) ways to choose R.

• All p sets in J are supersets of R, and do not contain any of the

elements in A\R. Let J /A def
= {S\A : S ∈ J } be the family of subsets

of {1, 2, . . . , m}\A defined by removing all elements of A from all sets
in J . Given R and A, this quotiented family uniquely defines J .

• We have |J /A| = p, the agreement set of J /A is empty, and every
element of J /A has cardinality at most n− r.

To count the ways to satisfy the last point, we introduce a generalization.

Definition 4.18 For nonnegative integers d, s, p, define F(d, s, p) to be the
number of families of p distinct subsets S1, . . . , Sp ⊆ {1, 2, . . . , d}, with each
subset having at most s elements, and

S1 ∩ . . . ∩ Sp = ∅, (4.22)
S1 ∪ . . . ∪ Sp = {1, 2, . . . , d}. (4.23)

Then, following the argument above, we have an expression for Nm,n(p, a):

Nm,n(p, a) =
(

m
a

) a

∑
r=0

(
a
r

)
F(m− a, n− r, p) (4.24)

The exact expression for F(d, s, p) is not important here, because we can
simplify Equation (4.21b) using a convenient combinatorial identity.
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4.2. Calculating qm,n

Lemma 4.19 With F(d, s, p) defined as in Definition 4.18,

∑
p≥1

(−1)p+1F(d, s, p) =

{
(−1)d if s ≥ d;

0 otherwise.
(4.25)

for all d, s ≥ 1.

We defer the proof of Lemma 4.19 to Appendix A.3.

We now calculate the alternating sum terms in Equation (4.21b).

∑
p≥1

(−1)p+1Nm,n(p, a) = ∑
p≥1

(−1)p+1
(

m
a

) a

∑
r=0

(
a
r

)
F(m− a, n− r, p) (4.26a)

=

(
m
a

) a

∑
r=0

(
a
r

)
∑
p≥1

(−1)p+1F(m− a, n− r, p) (4.26b)

=

(
m
a

) a

∑
r=0

(
a
r

)
(−1)m−a

1n−r≥m−a (4.26c)

=

(
m
a

) a

∑
r=0

(
a
r

)
(−1)m−a

1r≤n−m+a (4.26d)

Finally,

vk(Cm,n+1) =
m

∑
a=k

1
2a

(
a
k

)
∑
p≥1

(−1)p+1Nm,n(p, a) (4.27a)

=
m

∑
a=k

1
2a

(
a
k

)(
m
a

) a

∑
r=0

(
a
r

)
(−1)m−a

1r≤n−m+a (4.27b)

= (−1)m
m

∑
a=k

(
−1

2

)a (a
k

)(
m
a

) a

∑
r=0

(
a
r

)
1r≤n−m+a (4.27c)

= (−1)m
m

∑
a=k

(
−1

2

)a (a
k

)(
m
a

) n−m+a

∑
r=0

(
a
r

)
. (4.27d)

�

Proof (of Theorem 4.13) Given Proposition 4.14, the proof boils down to
algebraic manipulations. Theorem 4.12 gives us

qm,n = E [ χs(V ∩ Cm,n) ] (4.28)

= 2
b n−1

2 c

∑
i=0

vm−n+2i+1(Cm,n). (4.29)
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4. The Euler characteristic heuristic for the injectivity threshold

Then we have

qm,n+1 (4.30a)

= 2
b n

2 c

∑
i=0

vm−n+2i(Cm,n+1) (4.30b)

= 2
b n

2 c

∑
i=0

(−1)m
m

∑
a=m−n+2i

(
−1

2

)a ( a
m− n + 2i

)(
m
a

) n−m+a

∑
j=0

(
a
j

)
(4.30c)

= 2(−1)m
b n

2 c

∑
i=0

m

∑
a=m−n+2i

(
−1

2

)a ( a
m− n + 2i

)(
m
a

) n−m+a

∑
j=0

(
a
j

)
(4.30d)

= 2(−1)m
b n

2 c

∑
i=0

m

∑
a=m−n+2i

(
−1

2

)a ( n− 2i
a−m + n− 2i

)(
m

n− 2i

) n−m+a

∑
j=0

(
a
j

)
(4.30e)

= 2(−1)m
b n

2 c

∑
i=0

(
m

n− 2i

) m

∑
a=m−n+2i

(
−1

2

)a ( n− 2i
a−m + n− 2i

) n−m+a

∑
j=0

(
a
j

)
(4.30f)

= 2(−1)m
b n

2 c

∑
i=0

(
m

n− 2i

) m

∑
a=m−n+2i

(
−1

2

)a ( n− 2i
a−m + n− 2i

) n−m+a

∑
j=0

(
a
j

)
(4.30g)

We shift the index a = m− n + 2i + t to make it cleaner:

= 2(−1)m
b n

2 c

∑
i=0

(
m

n− 2i

) n−2i

∑
t=0

(
−1

2

)m−n+2i (
−1

2

)t (n− 2i
t

) 2i+t

∑
j=0

(
m− n + 2i + t

j

)
(4.31a)

=
b n

2 c

∑
i=0

(−1)n−2i( m
n−2i)

2m−n+2i−1

n−2i

∑
t=0

(
−1

2

)t (n− 2i
t

) 2i+t

∑
j=0

(
m− n + 2i + t

j

)
(4.31b)

And again reindexing, with ` = t + 2i, using the convention (a
b) = 0 for b < 0:

=
b n

2 c

∑
i=0

(−1)n−2i( m
n−2i)

2m−n+2i−1

n

∑
`=0

(
−1

2

)`−2i (n− 2i
`− 2i

) `

∑
j=0

(
m− n + `

j

)
(4.32a)

=
b n

2 c

∑
i=0

(−1)n( m
n−2i)

2m−n−1

n

∑
`=0

(
−1

2

)` (n− 2i
`− 2i

) `

∑
j=0

(
m− n + `

j

)
(4.32b)

=
(−1)n

2m−n−1

b n
2 c

∑
i=0

(
m

n− 2i

) n

∑
`=0

(
−1

2

)` (n− 2i
`− 2i

) `

∑
j=0

(
m− n + `

j

)
. (4.32c)

�
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4.3. Estimating the Euler characteristic threshold

4.3 Estimating the Euler characteristic threshold

This section is partly inspired by the MathOverflow answer Alekseyev [2021],
and the comments by the MathOverflow user fedja to that question. Note
however that the precise statements and the proof details here are original
contributions of the author of this work.

We will now nonrigorously estimate the expression in Theorem 4.13 using
the saddle point method. In principle, there is no great obstacle to doing it
rigorously and proving the exact phase transition of qm,n in terms of m/n.
However, in this chapter we are already working under the Euler characteris-
tic heuristic. Our main goal is not to analyze qm,n, but to demonstrate where
the phase transition for pm,n could be if the Euler characteristic heuristic is
justified.

In this section, it will be convenient to denote m− n = Kn for K > 0.
Let us estimate the order of the terms U(m, n, 2i) from Equation (4.11):

log2 |U(m, n, 2i)| = log2

(
m

n− 2i

)
+ log2

∣∣∣∣∣ n

∑
`=0

(
−1

2

)` (n− 2i
`− 2i

) `

∑
j=0

(
m− n + `

j

)∣∣∣∣∣.
(4.33)

Consider the second term in the above expression. It is equal to

log2

∣∣∣∣∣ n

∑
`=0

(
−1

2

)` (n− 2i
`− 2i

) `

∑
j=0

(
m− n + `

j

)∣∣∣∣∣ (4.34a)

= −n + log2

∣∣∣∣∣ n

∑
`=0

(−2)n−`
(

n− 2i
n− `

) `

∑
j=0

(
m− n + `

j

)∣∣∣∣∣ (4.34b)

= −n + log2

∣∣∣∣∣ n

∑
`=0

(−2)n−`
(

n− 2i
n− `

) `

∑
j=0

(
m− n + `

j

)∣∣∣∣∣ (4.34c)

We use generating functions to get a better expression for the term inside the
logarithm. By the binomial theorem,

n

∑
`=0

(−2)n−`
(

n− 2i
n− `

)
=
[

xn−`
]
(1− 2x)n−2i. (4.35)

For the prefix sum of binomial coefficients term, we use a more advanced
technique to get it as a coefficient sequence of the right generating function.

Lemma 4.20
`

∑
j=0

(
m− n + `

j

)
=
[

x`
]
(1− x)−m+n(1− 2x)−1. (4.36)
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4. The Euler characteristic heuristic for the injectivity threshold

We defer the proof of Lemma 4.20 to Appendix A.4.

Now we can write∣∣∣∣∣ n

∑
`=0

(−2)n−`
(

n− 2i
n− `

) `

∑
j=0

(
m− n + `

j

)∣∣∣∣∣ (4.37a)

=

∣∣∣∣∣
(

n−2i

∑
`=0

[
xn−`

]
(1− 2x)n−2i

)(
∞

∑
`=−∞

[
x`
]
(1− x)−m+n(1− 2x)−1

)∣∣∣∣∣
(4.37b)

=
∣∣∣[xn] (1− 2x)n−2i−1(1− x)−m+n

∣∣∣, (4.37c)

and thus

log2

∣∣∣∣∣ n

∑
`=0

(
−1

2

)` (n− 2i
`− 2i

) `

∑
j=0

(
m− n + `

j

)∣∣∣∣∣ (4.38a)

= −n + log2

∣∣∣[xn] (1− 2x)n−2i−1(1− x)−m+n
∣∣∣ (4.38b)

= −(2i + 1) + log2

∣∣∣∣∣[xn]

(
x− 1

2

)n−2i−1

(1− x)−m+n

∣∣∣∣∣ (4.38c)

= −(2i + 1) + log2

∣∣∣∣∣∣ 1
2π

∫
γ

(
z− 1

2

)n−2i−1
(1− z)−m+n

zn+1 dz

∣∣∣∣∣∣, (4.38d)

where we used Cauchy’s integral formula and Taylor’s theorem. Here γ is a
small enough loop around the origin in C.

From now on, we proceed to give a nonrigorous estimate on the integral
above using the saddle point method. The saddle point method allows us to
estimate integrals of the form

I(n) =

∫
γ

g(z)en f (z) dz (4.39)

for γ a tight loop around the origin. Let z0 be a dominant saddle point of f .
Then the approximated integral is

|I(n)| ≈
∣∣∣∣∣g(z0)en f (z0)

√
2π

n| f ′′(z0)|

∣∣∣∣∣. (4.40)

Recall we denote m− n = Kn for K > 0. We will apply the saddle point
method to the integral∫

γ

(
z− 1

2

)n−2i−1
(1− z)−Kn

zn+1 dz . (4.41)
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To bring it into the format of Equation (4.39), we pick

g(z) =
(

z− 1
2

)−2i−1

z−1 (4.42a)

f (z) = log
(

1
2
− z
)
− log(z)− K log(1− z) (4.42b)

For K > 3 + 2
√

2 ≈ 5.8, the relevant saddle point of f is

z0 =
−
√

K2 − 6K + 1 + K + 1
4K

, (4.43)

see Appendix A.5.

Note that z0 is a positive real number smaller than 1
2 : The saddle point

method now gives

log2

∣∣∣∣∣∣
∫

γ

(
z− 1

2

)n−2i−1
(1− z)−Kn

zn+1 dz

∣∣∣∣∣∣ (4.44)

≈ log2 g(z0) + n log2(e) f (z0) + O(log n). (4.45)

≈ −(2i + 1) log2

∣∣∣∣12 − z0

∣∣∣∣+ n log2(e) f (z0) + O(log n). (4.46)

Apart from the convergence issues when applying Taylor’s theorem, our
approximation here is not rigorous for two more reasons:

• The function g(z) depends on i, which may depend on n;

• The function f (z) has multiple saddle points depending on K, and the
analysis of which one is dominant depends on K and i.

However, we believe that these two issues are not crucial, because:

• Experimentally, for moderately large n, the terms U(m, n, 2i) with small
i are dominant; see Figure 4.2. The terms for larger i are completely
negligible due to the ( m

n−2i) factor.

• For small i and moderately large n, in the regime of K we are interested
in, the experiments agree with the approximation in the formula.

Plugging in the saddle point estimate into the equation for the integral yields
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Figure 4.2: For n = 100 and m = 834, the expression for qm,n+1 in Theorem 4.13 is dominated
by the first term, which corresponds to i = 0. Note the logarithmic scale in the figure. The ratio
m/n here is close to the predicted phase transition.

log2

∣∣∣∣∣ n

∑
`=0

(
−1

2

)` (n− 2i
`− 2i

) `

∑
j=0

(
m− n + `

j

)∣∣∣∣∣ (4.47a)

= −(2i + 1) + log2

∣∣∣∣∣∣ 1
2π

∫
γ

(
z− 1

2

)n−2i−1
(1− z)−m+n

zn+1 dz

∣∣∣∣∣∣ (4.47b)

≈ −(2i + 1) +
(
−(2i + 1) log2

∣∣∣∣12 − z0

∣∣∣∣+ n log2(e) f (z0) + O(log n)
)

(4.47c)

= −2i− 2i log2

∣∣∣∣12 − z0

∣∣∣∣+ n log2(e) f (z0) + O(log n) (4.47d)

and thus finally

log2 |U(m, n, 2i)| (4.48a)

≈ log2

(
m

n− 2i

)
− 2i− 2i log2

∣∣∣∣12 − z0

∣∣∣∣+ n log2(e) f (z0) + O(log n) (4.48b)

≈ m H((n− 2i)/m)− 2i− 2i log2

∣∣∣∣12 − z0

∣∣∣∣+ n log2(e) f (z0) + o(n) (4.48c)

= (K + 1)n H
(

1
K + 1

n− 2i
n

)
− 2i− 2i log2

∣∣∣∣12 − z0

∣∣∣∣+ n log2(e) f (z0) + o(n)

(4.48d)
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Figure 4.3: Our approximation in Equation (4.48d) for log2 |U(m, n, 2i)| in blue, versus the
exactly computed log2 |U(m, n, 2i)| in red. Here n = 100 and m = 834, for 0 ≤ i ≤ n/2 on the
x-axis.

The approximation in Equation (4.48) is experimentally sound, as we can
see from Figure 4.4. We now simplify the calculation with some technical
statements. The following lemma is proved in Appendix A.6.

Lemma 4.21 The expression

(K + 1)n H
(

1
K + 1

n− 2i
n

)
− 2i− 2i log2

∣∣∣∣12 − z0

∣∣∣∣+ n log2(e) f (z0) (4.49)

is stricly decreasing in i on the set {0, 1, . . . , bn/2c}. In particular, the approx-
imated log2 |U(m, n, 2i)| is maximal in

log2 |U(m, n, 0)| ≈ n
(
(K + 1) H

(
1

K + 1

)
+ log2(e) f (z0)

)
(4.50)

The above approximation is experimentally sound; the error in Figure 4.4 is
very small compared to n. Lemma 4.21 motivates the following approxima-
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Figure 4.4: Our approximation in Equation (4.50) for log2 |U(m, n, 0)| in blue, versus the
exactly computed log2 |U(m, n, 0)| in red. Here n = 100 and m = (K + 1)n for K on the x-axis.

tion of the expression in Theorem 4.13:

log2 |qm,n+1| (4.51a)

= −m + n + 1 + log2

∣∣∣∣∣∣
b n

2 c

∑
i=0

U(m, n, 2i)

∣∣∣∣∣∣ (4.51b)

≈ −m + n + 1 + log2 |U(m, n, 0)| (4.51c)

≈ −Kn + n
(
(K + 1) H

(
1

K + 1

)
+ log2(e) f (z0)

)
+ o(n) (4.51d)

= n
(
−K + (K + 1) H

(
1

K + 1

)
+ log2(e) f (z0)

)
+ o(n). (4.51e)

When n→ ∞, the final expression above goes to −∞ or +∞, depending on
the sign of the coefficient of n. We calculate the point where the coefficient
change sign in the following proposition, which we prove in Appendix A.7.

Proposition 4.22 The expression

−K + (K + 1)H
(

1
K + 1

)
+ log2(e) f (z0) (4.52)

is decreasing on K > 3 + 2
√

2 ≈ 5.8, and has an unique root

K0 ≈ 7.34463. (4.53)

Recall that we defined m = n + Kn. In view of Proposition 4.22 and the
computations in Equation (4.51), we have the following estimate on the phase
transition.
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4.3. Estimating the Euler characteristic threshold

Proposition 4.23 The phase transition for qm,n as defined in Equation (4.9)
and calculated in Theorem 4.13 happens at m = cEulern, for

cEuler = K0 + 1 ≈ 8.34. (4.54)

The phase transition is in the sense of: for all ε > 0, when n→ ∞,

m < (cEuler − ε)n =⇒ |qm,n| → ∞ (4.55a)
m > (cEuler + ε)n =⇒ qm,n → 0 (4.55b)

Note that we do not claim this as a theorem due to several nonrigorous steps
in this section. We did the computations because of Equation (4.9), so that
now we can pose the following conjecture for the injectivity threshold.

Conjecture 4.24 The injectivity phase transition coincides with the expected
Euler characteristic phase transition: for all ε > 0, when n→ ∞,

m < (cEuler − ε)n =⇒ pm,n → 0 (4.56a)
m > (cEuler + ε)n =⇒ pm,n → 1, (4.56b)

for cEuler ≈ 8.34.

Conjecture 4.24 is consistent with our findings in Chapter 3, where we gave a
proof that the injectivity threshold is at most 9.09, and experimental evidence
that it is larger than 5.
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Chapter 5

Deep injective networks

The natural extension of Chapter 3 is to try to get injectivity guarantees for
deep random networks. We can apply Theorem 3.12 on each layer to prove
that the network with (d0, d1, . . . , dL) = (n, Cn, C2n, . . . , CL−1n) is injective
with probability 1− o(n), for large enough C. This is not satisfying, because
the layer widths increase exponentially.

In this chapter, we prove that the layer widths may stay constant after the
first layer, with moderate restrictions on the depth:

Theorem 5.1 Let C ≥ 2L log L + Θ(L). For (d0, . . . , dL) = (n, Cn, . . . , Cn),
the network with random Gaussian weights and zero biases is injective with
probability 1− o(n).

We first develop a generalization of Theorem 3.4 to deep networks in Sec-
tion 5.1. We use this tool to prove Theorem 5.1 in Section 5.3, using technical
bounds from Section 5.2 and Chapter 6. We conclude with the connection
of injectivity of deep networks with well-known contractive properties of
neural networks in Section 5.4.

5.1 Characterizing injectivity

The goal of this section is to prove the key fact Lemma 5.8: a criterion
for injectivity in deep random ReLU networks. In this section, the only
assumption on the biases is that they are independent of the weight matrices.

For simplicity of exposition, we assume d` ≥ 3d0 for all 1 ≤ ` ≤ L. This is
not restrictive, as Theorem 3.11 shows that f is not injective for d1 < 3.4d0 if
d0 is large enough.

For single-layer networks, Theorem 3.4 is a practical criterion of injectivity
when the weights are independent Gaussians. One may ask whether there is
a similar criterion for deep networks.
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5. Deep injective networks

Example 5.2 Let W1 ∈ Rd1×d2 and W2 ∈ Rd2×d3 be matrices with independent
N(0, 1) entries. If we apply Theorem 3.4 on both layers, we get that the neural
network x 7→ ReLU(W2 ReLU(W1x)) is injective whenever:

• W1Rd1 doesn’t intersect any orthant Od2
S with |S| < d1; and

• W2Rd2 doesn’t intersect any orthant Od3
S with |S| < d2.

However, if d2 > d1, the above criterion loses a lot of power. The second
layer doesn’t actually take Rd2 as the input, but only a much smaller subset
of Rd2 : the image of x 7→ ReLU(W1x), which should look like a piecewise
linear d1-dimensional “submanifold”.

It turns out we can do much better than in Example 5.2. Let us first introduce
notation for prefixes of a neural network.

Definition 5.3 Let f : Rd0 → RdL be a neural network defined as in Equa-
tion (2.5):

f = ReLU ◦B(L) ◦ . . . ◦ ReLU ◦B(1). (5.1)

For 1 ≤ ` ≤ L, denote by f` the prefixes of the neural network f :

f` = ReLU ◦B(`) ◦ . . . ◦ ReLU ◦B(1). (5.2)

By convention, define also f0 = id. Note that fL = f .

The following lemma formalizes the key fact in this section:

Proposition 5.4 (Informal) Any layer can only create new noninjectivities
on half-open orthants with few pluses. That is, if f`(x) = f`(x′) ∈ Od`

S with
|S| small, then f`−1(x) = f`−1(x′).

Lemma 5.5 Let x ∈ Rd0 be an input vector, and 2 ≤ ` ≤ L. If f`(x) has at
least 2d0 + 1 positive coordinates, then almost surely there doesn’t exist an
x′ ∈ Rd0 for which f`(x) = f`(x′), but f`−1(x) 6= f`−1(x′).

Proof Every layer ReLU ◦B(i) is a piecewise affine map, which is affine on
the “wedges” mapping to any half-open orthant. More precisely, given an
orthant Odi

S such that the preimage (B(i))
−1

Odi
S is nonempty, define the affine

map B(i)
S such that B(i)

S x = ReLU(B(i)x) on this preimage.

The condition f`(x) = f`(x′) can be written as

B(`)
S`

B(`−1)
S`−1

. . . B(1)
S1

(x) = B(`)
S′`

B(`−1)
S′`−1

. . . B(1)
S′1

(x′) (5.3)

for some sets Si, S′i ⊆ {1, 2, . . . , di} for 1 ≤ i ≤ `.
Note that S` = S′`, because f`(x) = f`(x′).
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Write the affine map B(`)
S`

as the sum of a linear map and a bias term:

B(`)
S`
(t) = W(`)

S`
t + b(`) (5.4)

The matrix W(`)
S`

is just W(`) with some rows zeroed out. The rows replaced
by zeros correspond to the entries of f`(x) which are zero, which are indexed
by the complement of S`. Moreover, the nonzero rows are of full rank almost
surely, since the entries are independent Gaussians. As f (x) has at least
2d0 + 1 positive coordinates, |S`| ≥ 2d0 + 1. This means the nullity of W(`)

S`
is

at most d`−1 − 2d0 − 1.

We can rewrite Equation (5.3) as

B(`−1)
S`−1

. . . B(1)
S1

(x)− B(`−1)
S′`−1

. . . B(1)
S′1

(x′) ∈ Ker W(`)
S`

. (5.5)

Consider the left-hand side of Equation (5.5) as a function of x and x′. Its
image is contained in a linear subspace V ⊆ Rd`−1 with dim V ≤ 2d0 + 1,
because it is an affine transform of the vector [x, x′]T ∈ R2d0 .

If the matrix W(`)
S`

was independent of the affine subspace in question, we

would be done, because dim V + dim Ker W(`)
S`
≤ d`−1. The issue is that the

sets corresponding to the orthants in different layers are not independent.

However, we can condition on the sets (Si, S′i)1≤i≤`. The matrix W(`)
S`

and the
affine maps before are conditionally independent, given the sets correspond-
ing to the orthants. Thus we have

P
[
V ∩Ker W(`)

S`
6= {0} | (Si, S′i)1≤i≤`

]
= 0, (5.6)

and the probability is still zero after union bounding over the finite number
of possibilities for the sets Si and S′i . �

Remark 5.6 If the biases are zero, the bound 2d0 + 1 can be replaced by 2d0.
In that case, the affine transform that yields V is linear, thus the right-hand
side of Equation (5.5) is contained in a subspace V with dim V ≤ 2d0.

If we apply Lemma 5.5 to all layers, we get an actionable criterion for proving
injectivity of f .

Corollary 5.7 If f`(x) has at least 2d0 + 1 positive coordinates for all x ∈ Rd0

and 1 ≤ ` ≤ L, then f is injective.

As mentioned in Remark 5.6, we have shown a slightly stronger statement
when the biases are zero. The following statement will be our main tool in
the following sections.
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Lemma 5.8 If f has zero biases and f`(x) has at least 2d0 positive coordinates
for all x ∈ Rd0\{0} and 1 ≤ ` ≤ L, then f is injective.

We can leave out the origin from the input space Rd0 , since if f`(x) = f`(0)
for x 6= 0, we can apply Lemma 5.5 on x instead of 0.

Lemma 5.8 gets an important obstacle to injectivity out of the way, as a priori
different inputs could take completely different paths through the network
and map to the same output in the last layer. Thus, the problem is now
similar to the one-layer case, where orthants with less than d0 pluses are the
only obstacle to injectivity.

For L = 1, Theorem 3.4 shows that the bound 2d0 in Lemma 5.8 can be
replaced with d0. It is open whether the bound can be improved for L ≥ 2.

5.2 Activation regions of deep networks

From now on, assume the biases are all zero, so the affine transforms B(`) in
Equation (2.5) are random matrices W(`) with independent Gaussian entries.

Let W ∈ Rm×n be any matrix. Then the ReLU network layer x 7→ ReLU(Wx)
splits the input space into several activation regions, defined by the signs of
the preactivation neurons wT

i x.

Lemma 5.9 For m ≥ n, let W ∈ Rm×n be a matrix with independent N(0, 1)
entries. The number of activation regions of the network x 7→ ReLU(Wx) is
exactly

2
n−1

∑
i=0

(
m− 1

i

)
= 2T(m− 1, n− 1) ≤

( em
n

)n
(5.7)

Proof This is equivalent to Lemma 6.4. �

In deeper networks, there are subtle differences between various intuitive
definitions of activation regions. We formally define them as follows:

Definition 5.10 (Activation region) An activation region A of f is a maximal
subset of Rd0 on which all the prefixes f1, f2, . . . , fL are affine maps.

This definition is equivalent to how Hanin and Rolnick [2019] define activa-
tion regions. Another concept used in the literature are linear regions, which
are the regions on which f itself is affine. In a ReLU network with zero
biases, all activation regions are cones.

The natural question to ask is how many activation regions are there in a
random network with given layer widths. There is a simple bound which is
exponential in the number of layers L.
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Lemma 5.11 The number of activation regions of f` is at most
(

e` ∏`
i=1

di
d0

)d0
.

We defer the proof of Lemma 5.11 to Appendix A.2.

5.3 Injectivity of random deep networks

Consider the action of W(`) f`−1 on the input space Rn. Each activation region
A of f`−1 is mapped to a cone contained in a d0-dimensional subspace. Due
to rotational invariance of W(`), as seen in Proposition 3.3, the image of A is
contained in a random d0-dimensional subspace.

Inspired by this, we introduce one more technical ingredient from Chapter 6.

Lemma 6.6 Given a random subspace V ⊆ Rm, with dim V = n ≤ m, the
probability that V intersects a fixed orthant nontrivially is

1
2m−1

n−1

∑
i=0

(
m− 1

i

)
≤ 2−m

( em
n

)n
. (6.9)

We can now prove Theorem 5.1.

Theorem 5.1 Let C ≥ 2L log L + Θ(L). For (d0, . . . , dL) = (n, Cn, . . . , Cn),
the network with random Gaussian weights and zero biases is injective with
probability 1− o(n).

Proof We prove that, with large probability, f (x) has more than 2n positive
coordinates for all x ∈ Rn\{0}. This will set us up to use Lemma 5.8 to prove
injectivity.

Let RL be the “preactivation image” of f , that is,

RL
def
= W(L) fL−1(R

n\{0}). (5.8)

For any activation region A ⊂ Rn of f that is not equal to the zero cone {0},
consider its image

RL(A)
def
= W(L) fL−1(A) ⊆ RCn. (5.9)

The preactivation imageRL is the union of the imagesRL(A), asRL contains
the image of the activation region containing the origin 0 ∈ Rn if and only if
that region is not just the zero cone {0} ⊂ Rn.
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We calculate the probability over the randomness of f :

P [RL intersects a half-open orthant with at most 2n pluses] (5.10a)

≤∑
A

P [RL(A) intersects a half-open orthant with at most 2n pluses]

(5.10b)

≤
(

eLCL
)n

P [RL(A) intersects a half-open orthant with at most 2n pluses]

(5.10c)

≤
(

eLCL
)n

T(Cn, 2n) P [RL(A) intersects a fixed half-open orthant]

(5.10d)

≤
(

eLCL
)n

T(Cn, 2n) P [ spanRL(A) intersects a fixed half-open orthant nontrivially ]

(5.10e)

<
(

eLCL
)n
(

eCn
2n

)2n

2−Cn
(

eCn
n

)n

(5.10f)

=
(

2−C−2eL+3CL+3
)n

. (5.10g)

We used the union bound, then Lemma 5.11, then the union bound again,
and finally Lemma 6.6.

If we put C ≥ 2L log L+ 30L, the term inside the parentheses becomes smaller
than 1

2 , thus

P [RL intersects a half-open orthant with at most 2n pluses] ≤ 2−n. (5.11)

This implies that with probability 1− 2−n, for all x ∈ Rn\{0}, the output f (x)
has more than 2n positive coordinates. Moreover, the same is analogously
true for each prefix f1, . . . , fL−1 of f , so Lemma 5.8 finishes the proof. �

If we can improve Lemma 5.11, we can get a better depenendency in The-
orem 5.1, possibly even injectivity for C & log L. This is discussed in Ap-
pendix A.2. However, improving Lemma 5.11 will not give us injectivity for
a constant C independent of L, since the number of activation regions grows
with L. In the next section, we show an alternative line of attack.

5.4 Angle convergence and injectivity

As discussed in Labatie [2019], Daneshmand et al. [2020], Hanin and Rolnick
[2018], Schoenholz et al. [2016], and possibly elsewhere, the image of a deep
random ReLU neural network resembles a half-line through the origin. Vari-
ants of this phenomenon are called “pathology of one-dimensional signal”,
“mean shift” and “rank collapse” in the literature. The rank collapse paper
Daneshmand et al. [2020] gives evidence that a fixed set of input points,
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5.4. Angle convergence and injectivity

passed through a deep random ReLU network, almost surely converges to
a rank-one matrix. In Schoenholz et al. [2016], it is shown that large-width
random layers increase the correlation of two fixed inputs with high proba-
bility, which means that the angle of two inputs decreases as they are passed
through the network. This phenomenon, which we call angle convergence,
turns out be be very useful for injectivity of neural networks.

Given the rich literature for the angle convergence of a fixed set of inputs, it
is plausible that an uniform version of angle convergence could be true:

Conjecture 5.12 (Informal) The image of a deep random ReLU network is
contained in a cone of small angle.

In this section, we formalize this conjecture and prove that angle convergence
implies injectivity of deep networks of width independent of depth.

Definition 5.13 Let ε > 0. For any nonzero vector z ∈ Rm, define the set

Bangle(z, ε) =
{

y ∈ Rm\{0} : zTy ≥ (1− ε2)‖z‖‖y‖
}

(5.12)

of vectors with ε-small angle with z. Note that Bangle(z, ε) is a cone with the
origin removed, and that it doesn’t depend on the norm of z.

As in Section 5.3, consider the network with (d0, d1, . . . , dL) = (n, Cn, . . . , Cn),
zero biases and random Gaussian layers. We can prove noninjectivities cannot
happen too “locally” in the angle sense:

Proposition 5.14 Let x ∈ Rn be an input vector, and let ` ≥ 2. With proba-
bility 1− o(n), there doesn’t exist an x′ ∈ Rn for which f`(x) = f`(x′), but
f`−1(x) 6= f`−1(x′) and W(`) f`−1(x′) ∈ Bangle(W(`) f`−1(x), 1

2 ).

Remark 5.15 The statement of Proposition 5.14 looks as if it is not symmetric
in x and x′, but it is actually symmetric. The condition

W(`) f`−1(x′) ∈ Bangle

(
W(`) f`−1(x),

1
2

)
(5.13)

is equivalent to (using Equation (5.12)):

f`−1(x′)T
(

W(`)
)T

W(`) f`−1(x) ≥ 3
4

∥∥∥W(`) f`−1(x′)
∥∥∥∥∥∥W(`) f`−1(x)

∥∥∥. (5.14)

Proof The plan is to show that f`(x) has at least 2n positive coordinates,
and then use use Lemma 5.5 and Remark 5.6. For a vector x ∈ Rm, denote
xpos = ReLU(x) and xneg = x− xpos.

The key technical part is the following statement, proved in Appendix A.8:
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5. Deep injective networks
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Figure 5.1: The minimum pairwise dot product over k random points in Rn, passed through
the network with layer dimensions (n, Cn, . . . , Cn), and normalized to the unit sphere after each
layer. Here n = 10, C = 8, L = 20, k = 200. We plot the minimum dot products after both
activation and preactivation layers, as can be seen from the “jumps” in the plot. The results for
preactivations and activations are indexed by {0.5, 1.5, . . . , 19.5} and {0, 1, . . . , 20}, respectively.

Lemma 5.16 Let m = Cn, for C a large enough constant. Consider a random
vector z ∈ Rm drawn from any rotationally invariant distribution. With
probability 1− o(n), all y ∈ Bangle

(
z, 1

2

)
have at least 2n positive coordinates.

The matrix W(`) has a rotationally invariant distribution, so we can apply
Lemma 5.16 to z = W(`) f`−1(x). Then the conditions of Lemma 5.5 (for zero
biases) are satisfied, hence there aren’t any new noninjectivities in layer `.�

We propose the following concrete line of attack on the injectivity question
using Proposition 5.14.

Conjecture 5.17 There is a constant C such that for every large enough L:
for any x, x′ ∈ Rn, the network f with (d0, d1, . . . , dL) = (n, Cn, . . . , Cn), we
have W(L) fL−1(x) ∈ Bangle

(
W(L) fL−1, 1

2

)
.

The conjecture would imply injectivity (with large probability in n) for C
independent of L, since we could apply Theorem 5.1 for the first several
layers, and Proposition 5.14 for the rest of the network.

Conjecture 5.17 is stronger than the comparable statements in the literature,
since it concerns convergence in angle uniformly over the whole input space.
In Figure 5.1, we give some evidence in support of the conjecture by covering
the input space using an epsilon-net.
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Chapter 6

Random vectors in a halfspace and
related results

One of the ingredients of the proofs in Chapters 3 and 5 is the formula for the
probability that a given number of independent standard Gaussian vectors
lie in a single halfspace. Here we discuss this formula and related results,
inspired mostly by Bürgisser and Cucker [2013].

6.1 Number of regions in a hyperplane arrangement

Definition 6.1 A halfspace H in Rd is a subset of Rd, defined by a normal
vector w ∈ Rd\{0}:

H = {x ∈ Rd : wTx ≥ 0}. (6.1)

The boundary of a halfspace H with the normal vector w is a hyperplane h,
defined as

h = {x ∈ Rd : wTx = 0}. (6.2)

Each hyperplane corresponds to two halfspaces, depending on the direction
of the normal vector.

A set of hyperplanes h1, . . . , hk divide Rd into connected regions. Formally,
given a set of hyperplanes h1, . . . , hk, a region is defined as an intersection⋂k

i=1 Hi, for a suitable selection of halfspaces Hi corresponding to the hyper-
planes hi.

Definition 6.2 A set of hyperplanes h1, . . . , hk in Rd is in general position if

dim

(⋂
i∈I

hi

)
= d− |I| (6.3)

for all I ⊆ {1, 2, . . . , k} with |I| ≤ d.
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6. Random vectors in a halfspace and related results

We cite the following standard fact:

Theorem 6.3 Let m ≥ n. Let h1, . . . , hm be hyperplanes in general position in
Rn The number of regions regions is exactly

2
n−1

∑
i=0

(
m− 1

i

)
= 2T(m− 1, n− 1) ≤

( em
n

)n
(6.4)

A proof for the first equality can be found in Bürgisser and Cucker [2013],
Lemma 13.7. The bound on T(m− 1, n− 1) follows from Appendix A.1. In
fact, a stronger claim holds: the general position is the worst case, in the
sense that no arrangement of hyperplanes has more regions than the quantity
in Equation (6.4).

In Chapters 3 and 5, we discussed regions of sets of halfspaces defined by
independent standard normal vectors.

Lemma 6.4 For m ≥ n, let W ∈ Rm×n be a matrix with independent N(0, 1)
entries. Define the hyperplanes h1, . . . , hm using the rows w1, . . . , wm of the
matrix W as normal vectors. Then the number of regions h1, . . . , hm divide
Rn into is equal to

2
n−1

∑
i=0

(
m− 1

i

)
= 2T(m− 1, n− 1) ≤

( em
n

)n
(6.5)

Proof We only need to prove the halfspaces are in general position. Any
intersection of a subset of hi is the kernel of the corresponding submatrix of
W: for any I ⊆ {1, 2, . . . , m},

⋂
i∈I

hi =
{

x ∈ Rn : wT
i x = 0 for all i ∈ I

}
. (6.6)

As the rows of W are independent normal vectors, any subset of |I| ≤ n
rows is linearly independent with probability one, hence the dimension of its
kernel is equal to n− |I|, as required by Definition 6.2. �

Bürgisser and Cucker [2013] show that Lemma 6.4 has a straightforward
corollary defining the probability of existence of any particular region.

Proposition 6.5 For m ≥ n, let W ∈ Rm×n be a matrix with independent
N(0, 1) entries. For a given sign pattern σ ∈ {−1,+1}m, we have

P
[
there exists x ∈ Rn : σiwT

i x > 0 for all 1 ≤ i ≤ m
]
=

1
2m−1

n−1

∑
i=0

(
m− 1

i

)
.

(6.7)
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6.2. The probability of a random subspace intersecting a fixed orthant

Proof As before, define the hyperplanes h1, . . . , hm using the rows w1, . . . , wm
of the matrix W as normal vectors. Any fixed region defines a sign pattern
for the rows of the matrix W, depending in which halfspace associated with
hi the region belongs, for each 1 ≤ i ≤ m. No two regions define the same
sign pattern.

Any sign pattern is equally likely, because the distribution of the entries
of the matrix W is invariant to flips wi 7→ −wi. There are 2m possible sign
patterns and 2T(m− 1, n− 1) regions, hence the probability in question is

1
2m 2T(m− 1, n− 1) =

1
2m−1

n−1

∑
i=0

(
m− 1

i

)
. (6.8)

�

6.2 The probability of a random subspace intersecting
a fixed orthant

The following lemma can be found in [Morrison, 2010], although we believe
it has appeared before. We give our own proof, reducing it to Proposition 6.5.

Lemma 6.6 Given a random subspace V ⊆ Rm, with dim V = n ≤ m, the
probability that V intersects a fixed orthant nontrivially is

1
2m−1

n−1

∑
i=0

(
m− 1

i

)
≤ 2−m

( em
n

)n
. (6.9)

Proof As in Proposition 3.3, we can identify a random n-dimensional sub-
space of Rm with the column space of W ∈ Rm×n with independent N(0, 1)
entries.

Any orthant O in Rm corresponds to a sign pattern σ ∈ {−1,+1}m. Any
element of the column span is of the form Wx for x ∈ Rn. The condition
Wx ∈ O is equivalent to the condition

σiwT
i x ≥ 0 for all 1 ≤ i ≤ m. (6.10)

As m ≥ n and the distribution of W (or equivalently, over subspaces) is
atomless, we have

P
[
there exists x ∈ Rn : σiwT

i x ≥ 0 for all 1 ≤ i ≤ m
]

(6.11)

= P
[
there exists x ∈ Rn : σiwT

i x > 0 for all 1 ≤ i ≤ m
]

(6.12)

=
1

2m−1

n−1

∑
i=0

(
m− 1

i

)
(6.13)

by Proposition 6.5. �
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6. Random vectors in a halfspace and related results

Note that the distribution of W is rotationally invariant, so without loss
of generality we may assume the orthant is the nonnegative orthant R≥0.
However, we do not use this in our proof.

6.3 Almost evenly distributed spherical random vectors

In the MathOverflow post [Baghal, 2021], the following question was raised:

Question 6.7 Consider n independent random vectors z1, · · · , zn drawn from
the uniform distribution on the d-dimensional sphere Sd−1. What is the best
lower bound on n for which with high probability there exists a constant
c > 0 such that

cn ≤ |{1 ≤ i ≤ n : 〈zi, v〉 > 0}| (6.14)

for all v ∈ Rd\{0}?

We answered the question in [Paleka, 2021] using the formula in Lemma 6.4.
Our result shows that the minimal n is at most linear in d.

Proposition 6.8 If n = 160d, with probability 1− o(d) we have

|{1 ≤ i ≤ n : 〈zi, v〉 > 0}| ≥ n
4

(6.15)

Proof We use that the number of ”distinct” vectors v ∈ Sd−1 with respect to
the classifiers sgn〈·, zi〉 is

2T(n− 1, d− 1) ≤
(ne

d

)d
, (6.16)

because with probability 1 the kernels of the classifiers 〈·, zi〉 define a generic
hyperplane arrangement. Thus, instead of considering all vectors on the
sphere Sd−1, we can union bound over at most

( ne
d

)d representative vectors.

Let X = |{1 ≤ i ≤ n : 〈zi, e1〉 > 0}| for a basis vector e1, and note that X
is a sum of n independent Bernoulli variables. Moreover, it has the same
distribution if we replace e1 by any other vector, because the distribution of
the zi is rotationally invariant.

Then

P
[
there exists v ∈ Sd−1 such that |{1 ≤ i ≤ n : 〈zi, v〉 > 0}| < n

4

]
(6.17a)

≤
(ne

d

)d
P
[

X <
n
4

]
(6.17b)

≤ exp
(

d log(n)− n
16

+ d− d log d
)

(6.17c)

= exp(log(160)d− 9d) d→∞−−−→ 0, (6.17d)
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6.3. Almost evenly distributed spherical random vectors

where we used the union bound in the first inequality, and the Chernoff
bound on P[X < n/4] in the second inequality, in the form

P [X ≤ (1− δ)E[X]] ≤ exp
(
−1

2
δ2E[X]

)
. (6.18)

�

As pointed out in the comments to Baghal [2021] by the MathOverflow user
Sinan Saghal, for n < d the bound cannot hold uniformly on Rd\{0}. This is
because for any n < d vectors in Rd, there exists a vector orthogonal to all of
them. Hence, the optimal n in Question 6.7 is linear in d, with the constant
yet to be determined.
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Appendix A

Deferred proofs

A.1 Bounds on T(a, b)

Let a, b be positive integers such that a ≥ 2b. We defined the prefix-sum of
binomial coefficients

T(a, b) =
b

∑
i=0

(
a
i

)
. (A.1)

By definition, T(a, b) ≥ (a
b).

For 0 ≤ x ≤ 1, let H(x) = −x log2(x)− (1− x) log2(x). We have the upper
bound

T(a, b) =
b

∑
i=0

(
a
b

)
≤ 2aH(b/a). (A.2)

For a proof, see e.g. Theorem 3.1 in Galvin [2014]. The bound is approxi-
mately sharp for a/b constant.

We mostly use a slightly weaker bound, because is it nicer to plug in:

T(a− 1, b− 1) ≤ 1
2

( ea
b

)b
. (A.3)

A.2 Number of activation regions

There are several papers dealing with the maximum number of. Most promi-
nently, Hanin and Rolnick [2019] deal with random networks where the
weights and biases are independent with a continuous probability distribu-
tion. Given some smoothness assumptions, they show that the number of
activation regions should scale as

(O(d0 + d1 + . . . + dL)))
d0

d0!
, (A.4)
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A. Deferred proofs

which is exponential only in the input dimension, and polynomial in the
depth. Unfortunately, their proof does not generalize to the zero bias case,
which makes it incompatible with the general theme of this work.

Therefore, we opt to use the simple bound, which is exponential in depth.
Since we didn’t find a short proof of this statement in the literature, we
present a simple proof by induction.

Lemma 5.11 The number of activation regions of f` is at most
(

e` ∏`
i=1

di
d0

)d0
.

Proof We use induction. The case ` = 1 follows from Lemma 5.9. The
prefix network f`−1 maps each activation region A in Rd

0 to a cone in Rd`−1 ,
contained in a subspace V with dim V = d0.

Due to rotational invariance, the weight matrix W(`) acts on V like a Rd0×d`

i.i.d Gaussian matrix. This means that the activation region A splits up into

at most
(

d`
d0

)d0
regions, hence the bound in question. �

If the results in Hanin and Rolnick [2019] would generalize to the zero bias
case, we could plausibly get a better dependency of the expansivity ratio in
Theorem 5.1, for example C ≥ log L.

A.3 Proof of Lemma 4.19

Recall the definition of F(d, s, p) and the statement we want to prove.

Definition 4.18 For nonnegative integers d, s, p, define F(d, s, p) to be the
number of families of p distinct subsets S1, . . . , Sp ⊆ {1, 2, . . . , d}, with each
subset having at most s elements, and

S1 ∩ . . . ∩ Sp = ∅, (4.22)
S1 ∪ . . . ∪ Sp = {1, 2, . . . , d}. (4.23)

Note that F is well-defined for d = 0: for all s ≥ 0 and p ≥ 2, we have
F(0, s, 1) = 1 and F(0, s, p) = 0.

Lemma 4.19 With F(d, s, p) defined as in Definition 4.18,

∑
p≥1

(−1)p+1F(d, s, p) =

{
(−1)d if s ≥ d;

0 otherwise.
(4.25)

for all d, s ≥ 1.

To prove Lemma 4.19, we introduce two “relaxations” of F, which will be
used to express F using inclusion-exclusion. The definition of G drops the
empty intersection condition, and the definition of H drops the set cover
condition too.
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A.3. Proof of Lemma 4.19

Definition A.1 For nonnegative integers d, s, p, define G(d, s, p) to be the
number of families of p distinct subsets S1, . . . , Sp ⊆ {1, 2, . . . , d}, with each
subset having at most s elements, and

S1 ∪ . . . ∪ Sp = {1, 2, . . . , d}. (A.5)

Definition A.2 For nonnegative integers d, s, p, define H(d, s, p) to be the
number of families of p distinct subsets S1, . . . , Sp ⊆ {1, 2, . . . , d}, with each
subset having at most s elements.

It’s easy to see that H has a simple closed form:

H(d, s, p) =
(

T(d, s)
p

)
. (A.6)

We will proceed by proving Lemma 4.19 directly, without calculating F as an
intermediate step. Note that in principle it is possible to calculate F explicitly
by inclusion-exclusion, but the resulting expressions are tedious to deal with.

Proof (of Lemma 4.19) We can use inclusion-exclusion to decompose F over
the empty intersection condition. The number of set families counted by G
and having k fixed elements in their intersection is exactly G(d− k, s− k, p)
if k ≤ min(d, s), and zero otherwise. Thus

F(d, s, p) =
min(d,s)

∑
k=0

(−1)k
(

d
k

)
G(d− k, s− k, p). (A.7)

Analogously, we can decompose H over the set cover condition. The number
of set families counted by H and missing k fixed elements in their union is
exactly H(d− k, s, p), hence

G(d, s, p) =
d

∑
k=0

(−1)k
(

d
k

)
H(d− k, s, p). (A.8)

The binomial theorem applied on (1− 1)T(d,s) = 0 yields

∑
p≥1

(−1)p+1H(d, s, p) = 1, (A.9)

since Equation (A.6) gives H(d, s, p) = (T(d,s)
p ), and T(d, s) ≥ 1 for d, s ≥ 0.
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A. Deferred proofs

Hence

∑
p≥1

(−1)p+1G(d, s, p) (A.10)

=
d

∑
k=0

(−1)k
(

d
k

)
∑
p≥1

(−1)p+1H(d− k, s, p) (A.11)

=
d

∑
k=0

(−1)k
(

d
k

)
(A.12)

=

{
1 if d = 0;
0 otherwise.

(A.13)

Finally, we can calculate the alternating sum in Equation (4.25):

∑
p≥1

(−1)p+1F(d, s, p) (A.14)

=
min(d,s)

∑
k=0

(−1)k
(

d
k

)
∑
p≥1

(−1)p+1G(d− k, s− k, p) (A.15)

=
min(d,s)

∑
k=0

(−1)k
(

d
k

)
1d=k (A.16)

=

{
(−1)d if s ≥ d;

0 otherwise.
(A.17)
�

A.4 Proof of Lemma 4.20

Lemma 4.20
`

∑
j=0

(
m− n + `

j

)
=
[

x`
]
(1− x)−m+n(1− 2x)−1. (4.36)

Proof Note that multiplying a generating function by (1− x)−1 is equivalent
to a “partial sum” of the coefficients. Using the binomial theorem,

`

∑
j=0

(
m− n + `

j

)
=
[
z`
]
(1 + z)m−n+`(1− z)−1 (A.18)

Recall the Lagrange–Bürmann formula [Wikipedia, 2020] in the form:

Theorem A.3 (Lagrange–Bürmann formula) Let φ be a formal power series
with φ(0) 6= 0. Let f and g be formal power series such that f (w)φ(w) = w
and f (g(z)) = z. Then, for any formal power series H and for any integer k,[

wk
]

H(w)φ(w)k−1(φ(w)− wφ′(w)) =
[
zk
]

H(g(z)). (A.19)
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A.5. Saddle points

We apply the formula with k = `, H(x) = (1 − w)−m+n−`+1(1 − 2w)−1,
φ(w) = 1− w, f (w) = w

1−w and g(z) = z
1+z to get[

z`
]
(1 + z)m−n+`(1− z)−1 (A.20)

=
[
w`
]
(1− w)−m+n−`+1(1− 2w)−1(1− w)`−1 (1− w + w) (A.21)

=
[
w`
]
(1− w)−m+n(1− 2w)−1, (A.22)

which is exactly what we wanted to prove. �

A.5 Saddle points

Recall Equation (4.42b):

f (z) = log
(

1
2
− z
)
− log(z)− K log(1− z). (A.23)

All saddle points of f are solutions to the equation

f ′(z) = 0 ↔ 1
z− 1

2

− 1
z
+

K
1− z

= 0 (A.24)

↔ 2Kz2 − (K + 1)z + 1 = 0, (A.25)

with the solution closest to the origin being

z0 =
−
√

K2 − 6K + 1 + K + 1
4K

. (A.26)

A.6 Proof of Lemma 4.21

Lemma 4.21 The expression

(K + 1)n H
(

1
K + 1

n− 2i
n

)
− 2i− 2i log2

∣∣∣∣12 − z0

∣∣∣∣+ n log2(e) f (z0) (4.49)

is stricly decreasing in i on the set {0, 1, . . . , bn/2c}. In particular, the approx-
imated log2 |U(m, n, 2i)| is maximal in

log2 |U(m, n, 0)| ≈ n
(
(K + 1) H

(
1

K + 1

)
+ log2(e) f (z0)

)
(4.50)

Proof The derivative of the binary entropy H with respect to its argument is

d
dp

H(p) = − log2
p

1− p
. (A.27)
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We differentiate the expression in Equation (4.49) with respect to i:

d
di

(
(K + 1)n H

(
1

K + 1
n− 2i

n

)
− 2i− 2i log2

∣∣∣∣12 − z0

∣∣∣∣+ n log2(e) f (z0)

)
(A.28a)

= −(K + 1)n log2

(
1

K+1
n−2i

n

1− 1
K+1

n−2i
n

)(
− 2
(K + 1)n

)
− 2− 2 log2

∣∣∣∣12 − z0

∣∣∣∣
(A.28b)

= 2 log2

(
n− 2i

Kn + 2i

)
− 2− 2 log2

∣∣∣∣12 − z0

∣∣∣∣ (A.28c)

= 2 log2

(
n− 2i

Kn + 2i
1

|1− 2z0|

)
< 0, (A.28d)

where the last inequality is due to the elementary computation

K|1− 2z0| = K

(
1− 2

−
√

K2 − 6K + 1 + K + 1
4K

)
(A.29)

=
1
2

(
K− 1 +

√
K2 − 6K + 1

)
> 1. (A.30)

�

A.7 Proof of Proposition 4.22

Proposition 4.22 The expression

−K + (K + 1)H
(

1
K + 1

)
+ log2(e) f (z0) (4.52)

is decreasing on K > 3 + 2
√

2 ≈ 5.8, and has an unique root

K0 ≈ 7.34463. (4.53)

We do not prove this completely rigorously due to messy calculations; as the
expression in question is a “reasonable” function of K, we think graphical
evidence in Figure A.1 is almost sufficient.

Proof (Nonrigorous) Recall the definitions of the function f and the saddle
point z0:

f (z) = log
(

1
2
− z
)
− log(z)− K log(1− z) (A.31a)

z0 =
−
√

K2 − 6K + 1 + K + 1
4K

. (A.31b)
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A.7. Proof of Proposition 4.22

6.0 6.5 7.0 7.5 8.0
K

0.4

0.2

0.0

0.2

0.4

0.6

K
+

(K
+

1)
H

(
1

K
+

1)
+

lo
g 2

(e
)f(

z 0
)

5 10 15 20 25 30
K

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

K
+

(K
+

1)
H

(
1

K
+

1)
+

lo
g 2

(e
)f(

z 0
)

Figure A.1: The behaviour of the expression in Equation (4.52), on the critical interval and
globally.
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A. Deferred proofs

The derivative of z0 with respect to K is:

dz0

dK
=

d
dK
−
√

K2 − 6K + 1 + K + 1
4K

=
−
√

K2 − 6K + 1− 3K + 1
4K2
√

K2 − 6K + 1
. (A.32)

The derivative of the expression in question is then

d
dK

(
−K + (K + 1)H

(
1

K + 1

)
+ log2(e)

(
log
(

1
2
− z0

)
− log(z0)− K log(1− z0)

))
(A.33)

= −1−
log2 K
K + 1

+ log2(e)

(
2 log(2)− log

(√
K2 − 6K + 1 + 3K− 1

K

))
,

(A.34)

which can be seen to be less than zero for K > 3 + 2
√

2 ≈ 5.8. The graph
crosses 0 in a unique point K0, which can be numerically estimated to be
close to 7.34463. �

A.8 Proof of Lemma 5.16

Lemma 5.16 Let m = Cn, for C a large enough constant. Consider a random
vector z ∈ Rm drawn from any rotationally invariant distribution. With
probability 1− o(n), all y ∈ Bangle

(
z, 1

2

)
have at least 2n positive coordinates.

Proof We want to show Bangle(z, 1
2 ) intersects a small number of half-open

orthants. This will imply that it has low probability of intersecting a half-open
orthant with few pluses.

Consider a fixed orthant Om
S ⊆ Rm.

Pz∼Unif(Sm−1)

[
Bangle

(
z,

1
2

) ⋂
Om

S 6= {0}
]

(A.35a)

= Pz∼Unif(Sm−1)

[
Bangle

(
z,

1
2

)
intersects the nonnegative orthant

]
(A.35b)

= Pz∼Unif(Sm−1)

[
there exists y ∈ Sm−1, y ≥ 0 for which zTy ≥ 3

4

]
(A.35c)

= Pz∼Unif(Sm−1)

[∥∥zpos
∥∥2 ≥ 3

4

]
(A.35d)

= Pz∼Unif(Sm−1)

[∥∥zneg
∥∥ ≤ 1

2

]
(A.35e)

Now,
∥∥zneg

∥∥ intuitively concentrates very well around
√

2
2 , so we expect

exponential decay in Equation (A.35e).
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A.8. Proof of Lemma 5.16

We finish with a standard computation. Write the uniform distribution on
the sphere as a normalized standard Gaussian, so z ∝ (g1, g2, . . . , gm) and∥∥zneg

∥∥2
=

∑i∈S g2
i

∑m
i=1 g2

i
. (A.36)

Let S ⊆ {1, 2, . . . , m} be the set of nonzero coordinates of zneg.
Then |S| ∼ B

(
m, 1

2

)
, so using Chernoff gives

P [|S| > 0.505m] ≤ exp
(
−m

6
· (0.005)2

)
. (A.37)

Conditioning on the complement of the above, we assume |S| ≤ 0.505m.
Using the standard chi-square bounds (see Lemma 1 from Laurent and
Massart [2000]):

P

[
∑
i∈S

g2
i ≤ |S| − 2

√
|S|x

]
≤ exp (−x) (A.38)

P

[
m

∑
i=1

g2
i ≥ m + 2

√
mx + 2x

]
≤ exp (−x) (A.39)

Pick x = m
40000 , and condition on the complements again. After straightfor-

ward calculations, we get

P

[∥∥zneg
∥∥2 ≤ 1

4

]
≤ c1 exp(−c0m) = c1 exp(−c0C)n (A.40)

with c1 = 3 and c0 = 10−6.

Let Ωm,n be the family of sets in {1, 2, . . . , m} with |S| ≤ 2n. The sets in Ωm,n
correspond to all half-open orthants with at most 2n pluses in Rm.

Due to the bounds in Appendix A.1, we have |Ωm,n| = T(m, 2n) ≤ (eC/2)2n.
We union bound over all orthants corresponding to the sets in Ωm,n:

Pz∼Unif(Sm−1)

[
∃y ∈ Bangle

(
z,

1
2

)
with ≤ 2n positive coordinates

]
(A.41)

≤ ∑
S∈Ω

Pz∼Unif(Sm−1)

[
Bangle

(
z,

1
2

) ⋂
Om

S 6= {0}
]

(A.42)

≤ (eC/2)2nc1 exp(−Cc0)
n (A.43)

≤ c1(e2C2 exp(−Cc0))
n, (A.44)

and the expression under the exponent can be arbitrarily small if we take C a
large enough constant. �

Note that we can show a stronger statement: if we replace 1
2 in Lemma 5.16

with any ε <
√

2
2 , the probability in Lemma 5.16 still decays exponentially.
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Appendix B

More on intrinsic volumes

B.1 Intrinsic volumes of orthants

Lemma 4.16 For 0 ≤ k ≤ d, the intrinsic volume vk of the nonnegative
orthant Od

{1,2,...,d} = Rd
≥0 ⊆ Rd is

vk(R
d
≥0) =

1
2d

(
d
k

)
. (4.18)

Proof Sample a point g ∼ N(0, Id). The projection of g to Rd
≥0 is equal to

gpos = ReLU(g). The relative dimension of the face of Rd
≥0 that gpos belongs

to is equal to the number of positive coordinates of g. As the coordinates of a
standard normal vector are independent Bernoulli variables with parameter
1
2 , the relative dimension has the distribution of a B(d, 1

2 ) binomial variable.

The intrinsic volume vk is just the probability that the relative dimension is k,
which is equal to 1

2d (
d
k) for a B(d, 1

2 ) variable. �

Lemma 4.17 For 0 ≤ d ≤ m, let F : Rd → Rm be an isometric linear embed-
ding. Then, for 0 ≤ k ≤ d,

vk(FRd
≥0) =

1
2d

(
d
k

)
, (4.19)

and vk(FRd
≥0) = 0 for k > d.

Proof Any isometric linear embedding F : Rd → Rm can be decomposed as
F = QId×m, where Q ∈ Rm×m is orthogonal and Id×m ∈ Rd×m is the identity
embedding from Rd to the first d coordinates of Rm.

If g ∼ N(0, Im), QTg has the same distribution as g, because Q is orthogonal
and the distribution is rotationally invariant. Therefore we may assume
Q = I and F = Id×m without loss of generality.
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B. More on intrinsic volumes

Sample a point g ∼ N(0, Im). The projection of g to Im×dRd
≥0 is equal to

(ReLU(g1), . . . , ReLU(gd), 0, 0, . . . , 0) (B.1)

The first d coordinates of a standard normal vector in Rm are distributed as
N(0, Id). Hence, relative dimension of the face of Im×dRd

≥0 the projection gets
mapped to is again distributed as B(d, 1

2 ), and we can finish as in the proof
of Lemma 4.16. �

B.2 Defining intrinsic volumes for nonconvex cones

This section is a short summary of Section 6.5 in Schneider and Weil [2008].

We call a subset of Sm−1 spherically convex if it’s an intersection of a convex
cone with Sm−1. Let Ks be the set of all spherically convex sets. The spherical
convex ring Rs, as defined in Schneider and Weil [2008], is the family of all
finite unions of spherically convex subsets of Sm−1. As the intersection of
two convex sets is convex, we can say that Ks generates Rs by finite unions
and intersections.

We say that a real-valued function is additive on some domain if it satisfies
Equation (4.6). For example, a map F : Ks → R is additive if

F(A ∩ B) + F(A ∪ B) = F(A) + F(B) (B.2)

for all A, B ∈ Ks such that A ∪ B ∈ Ks.

We say that a map F : Ks → R is a valuation whenever it is additive and
F(∅) = 0. The following classical theorem allows us to extend valuations
from the generating family Ks to the full space Rs:

Theorem B.1 (Groemer’s extension theorem) Every continuous valuation
F : Ks → R has an additive extension to Rs.

For a proof, see Theorem 14.4.2 in Schneider and Weil [2008]. They prove a
generalization for valuations with values in any topological vector space.

Using the additive functional equation, we can easily get the expression for
the extended valuation. For any S ∈ Rs, we can represent S = ∪n

i=1Ki for
some K1, . . . , Kn ∈ Ks.

F(S) = ∑
∅ 6=J⊆I

(−1)|J|+1 F

(⋂
i∈J

Ki

)
. (B.3)

We can see that F(S) is well-defined using the additivity of F on Ks. For any
two representations of S as a finite union of spherically convex sets, we can
expand them to the “lowest common denominator” representation, and then
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B.2. Defining intrinsic volumes for nonconvex cones

apply additivity of F to prove that the right-hand sides of Equation (B.3) are
the same.

The intrinsic volumes vk, as defined in Definition 4.5, are not defined on
spherically convex sets, but convex cones. However, we can uniquely identify
each spherically convex set with a nonempty convex cone. Thus by abuse of
notation we can define

vk(S)
def
= vk(C) (B.4)

for S ∈ Ks and C the unique convex cone such that C ∩ Sd−1 = S.

We can easily check that vk for k ≥ 1 are additive on Ks; for a reference, see
Theorem 6.5.2 in Schneider and Weil [2008]. The exceptional v0 as defined in
Definition 4.5 is not additive, but this is not relevant for our work, as we do
not use v0 in Chapter 4.

The defining Equation (4.6) for vk(C) in Definition 4.8 corresponds to apply-
ing Equation (B.3) to the valuation vk.
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